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ABSTRACT 

The minimum mean-squared error-best biased estimator (MBBE) of variance as 

proposed by Wencheko and Chipoyera [Estimation of the variance when Kurtosis is 

known, Stat Papers, 50:455-464,2009] have been used in this article by adjusting 

kurtosis estimation procedure based on trimmed mean and to be used in the 

construction of two asymptotic interval estimations for the difference between two 

independent variances of nonnormal distributions that utilizes the kurtosis via two 

hybrid methods. The first hybrid method is to estimate or recover the variances of the 

two variance estimates which are required for constructing the confidence interval for 

the difference of variances from the confidence limits for the two individual variances. 

The second hybrid method is to construct a confidence interval for the variance 

difference in an analogous way as recently proposed by Herbert, Hayen, Macaskill and 

Walter [Interval estimation for the difference of two independent variances. 

Communications in Statistics, Simulation and Computation, 40:744-758, 2011]. In the 

case where there is no difference between population variances, simulation results 

shown in terms of coverage probabilities and average widths that the confidence 

intervals generated from these two hybrid methods can be highly  recommended in  

asymmetric (skewed) and symmetric distributions, respectively, because they both are 

not only perform well in the sense that both can generally well control the coverage 

probabilities to be closed enough to the nominal level when sample sizes are moderate 

or large regardless of balance or unbalance designs but also outperform than that of 

their existing confidence intervals which were established from the usual unbiased 

sample variance estimator. However, the confidence interval produced from the first 

method seems to be more preferable since it also hold its level well even for symmetric 

distributions but are slightly liberal only for highly leptokurtic while the other is liberal 

for asymmetric distributions. When the difference in variances occurs and distributions 

are normal in shape, the confidence interval generated from the first method is the 
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most appropriate. The simulation based on the case in which variances are unequal or 

observations are drawn from dissimilar nonnormal distribution shapes have already 

been considered but the result appears to be out of interest. 

 

Keywords: Minimum mean– squared error, MOVER, Kurtosis, interval estimation, 

biased estimator. 

 

1. INTRODUCTION 

 An improved estimator of the variance that utilizes the kurtosis was 

initially derived by Seals and Intarapanich (1990) and later generalized by 

Wencheko and Chipoyera (2007). The estimator has the form 
2

WS =             

w(n-1)
2S  where the weight, w = [(n+1)+( 

4  – 3)n
-1

 (n-1)]
-1

  is an optimal 

value that minimizes the MSE (
2

WS ) and 
4  is the kurtosis. Wencheko et al. 

(2007) defined this estimator of 
2 as the “minimum mean-squared error best 

biased estimator” (MBBE).Since the relative efficiency (RE) of the MBBE is 

larger than 1, thus, implying that the MBBE is always more efficient than the 

usual unbiased estimator 
2S of variance. This statistic is of interested, in the 

present paper, we intended to deal with the MBBE of variance by adjusting a 

kurtosis estimation procedure using trimmed mean (and later let’s called the 

adjusted MBBE of variance), then making used of it to establish the 

confidence intervals for difference between variances. By the way,  there is 

an alternative approach to construction of confidence intervals for the 

difference in variance involves using the readily available method of Zou and 

Donner (2008) who summarized their ideas as the Method of Variance 

Estimates Recovery (Mover : Zou (2008)). The MOVER combines 

confidence intervals based on separate samples and has identical spirits. 

(Qiong Li et al. (2011)). This method is quite convenient and effective 

approach for constructing confidence intervals for difference of parameters. 

Hence, with the 
2S , 

2

WS  ,adjusted MBBE of variance and the MOVER–type 

confidence intervals three new interval estimations for the difference between 

two nonnormal population variances are desired. The comparing of these 

three estimator’s performances is included. 

 

As recently proposed, Herbert et al. (2011) had been described a 

simple analytical method to calculate confidence intervals for the difference 

of two independent samples, with reason, the methods for interval estimation 

have not been described before. In their investigation, the authors suggested 

that, at least when the observations are normally distributed with equal 

variances and equal sample sizes, it may be reasonable to generate 
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confidence intervals for the difference in variances by assuming that its 

sampling distribution is approximately normal [Herbert et al., 2011]. In light 

of that, the second statistical procedure that we used to construct the 

confidence interval for the variance difference of nonnormal distributed 

population based on the adjusted MBBE of variance is then adopted Herbert 

et al.’s approach. This article aims to investigate how the unbiased 

estimator
2S and the adjusted MBBE of variance perform relative to the 

proposed interval estimation for the variance difference procedures when data 

are non normal. 

 

2. THE PROPOSED INTERVAL ESTIMATION 

PROCEDURES 

Let
11 1n1 21 2n2X ,...,X ,X ,...,X  be two continuous independent 

samples, each sample being identical independent with distribution function 

iG (x) , mean μᵢ, variance 
2

i  and finite fourth moments 
4i

  
for i= 1,2.The 

sample means and variances are  
in

i ij ij 1
X X n ,i 1,2


   and 

in2 2
i j i ij 1

S (X X ) (n 1),i 1,2,


    respectively. In the sections that 

follows, we present two hybrid methods for making inference about a 

confidence interval for the difference between two population variances   
2 2

1 2  . 

 

2.1  Asymptotic Normal Distributions (General approach) 

2.1.1 An unbiased population variance estimator                           

It is well known that the usual unbiased estimate of variance is
 

2

iS , i =1,2  

and its variance that available in statistical literature is given by 
2 4

i 4i i i i iVar(S ) [ (n 3) / (n 1)] / n       where 
4 4

4i i i/     and 
4

i  is the 

population fourth central moment. For samples sufficiently large provided the 

population fourth moment is finite, the sample variance is asymptotically 

normally distributed with mean E(
2

iS  )and variance V(
2

iS ). A simple large-

sample procedure for constructing a 100 (1-α) % confidence interval for 

variance can be obtained as   

 

   

2 2
2i i
i

/ 2 4i i i i / 2 4i i i i

S S

ˆ ˆ1 z [ (n 3) /(n 1)]/ n 1 z [ (n 3) /(n 1)]/ n 

  
         

          (1) 
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where 
in 4 4

4i ji i i ij 1
ˆ (X X ) / n S


    and

 /2z
be a critical z-value. Another 

approach is to make use of the MBBE of variance in the similar pattern of 

(1). 

 

2.1.2 The MBBE of variance  

The MBBE of variance is of the form 2 2
wi i i i S w (n 1)S    

2
i i i 4i iS [{(n 1) /(n 1)} ( 3) / n ]    

 
and 2 2

wi i iE(S ) w(n 1) ,   i = 1, 2,   where 

i i 4i i i iw 1 [(n 1) ( 3)(n 1) / n ], 0 < w 1       2 2 2 2
wi wi iMSE(S ) E(S )   

 
22 2 2 4

i i i i i iw (n 1) Var(S ) (n 1)w 1      , where
4i is the kurtosis. 

 

For large nᵢ , when randomly sampling from any distribution with a finite 

fourth moment , and By the central limit theorem , The MBBE of variance is 

approximately standard normal with 
2

wiE(S )  and
2

wiMSE(S ) .Consequently, 

an approximate two–sided 100 (1-α)% confidence interval for the variance 

may be given as   

 

2 2
ii / 2 4i i i i i

ˆL S {1 z [{ (n 3) /(n 1)}/ n ] [1 1/ w (n 1)] }


         , 

                           

2 2
ii / 2 4i i i i i

ˆU S {1 z [{ (n 3) /(n 1)}/ n ] [1 1/ w (n 1)] },


        
   

(2) 

 

where 
in 4 4

4i ji i i ij 1
ˆ (X X ) / n S ,


    

/2z  
be a critical z-value and ŵᵢ 

=
1

i 4i i i
ˆ[(n 1) ( 3)(n 1) / n ]     . 

 

2.1.3 The adjusted MBBE of variance  

Since an estimate of 2
wiMSE(S ) will require an estimate of kurtosis, and it is 

well known that a usual kurtosis estimate  
in 4 4

4i ji i i ij 1
ˆ (X X ) / n S


   , i = 

1,2, was badly biased in sampling from nonnormal  populations, an 

alternative adjusted kurtosis estimate then has been used and is of the form:   

 
in' 4 4

4i ij i i ij 1
ˆ (X m ) / n S


    



Interval Estimation for the Difference between Variances of Nonnormal Distributions that  

Utilize the Kurtosis 
 

 Malaysian Journal of Mathematical Sciences 123 

 

where mᵢ  is a trimmed mean with trim–proportion equal to i1 2 n 4 .  Note 

that we used the trimmed mean in place of mean as suggested by Bonett 

(2006) because the trimmed mean not only tends to provide a better kurtosis 

estimate but also tends to improve the accuracy of the interval estimation for 

leptokurtic (heavy-tailed) or skewed distributions. This adjustment MBBE 

estimator of variance (adjusted (MBBE)ᵢ) yields the two sided 100(1-α) % 

confidence interval   for variance:    

 

2 ' ' 2
i / 2 4i i i i i i

ˆL S {1 z [{ (n 3) /(n 1)}/ n ] [1 1/ w (n 1)] }


          

                                 

2 ' ' 2
i / 2 44ii i i i i i

ˆU S {1 z [{ (n 3) /(n 1)}/ n ] [1 1/ w (n 1)] }


             (3)                  

 

 where
in' 4 4

44ii ji i i ij 1
ˆ (X m ) / n S ,


   /2z

be a critical z-value and 

' 1
i i 4i i i

ˆŵ [(n 1) ( 3)(n 1) / n ] .        

 

2.2 The hybrid methods  

Suppose we would like to construct two sided 100 (1-α) % confidence 

interval, denote by ( L , U ) for θ₁-θ₂ where θ₁, θ₂ denote any two interested 

parameters. By the central limit theorem, if  1̂   , and 2̂ be two independent 

point estimates which are normally distributed, then the lower limit L  and 

the upper limit U  are given respectively, by  

 

                    
1 2 / 2 1 2

ˆ ˆ ˆ ˆL z va r( ) va r( ),
 

                                       (4) 

 

 and
           

 1 2 / 2 1 2
ˆ ˆ ˆ ˆU z va r( ) va r( ),

 

                                     (5) 

 

where z α/2 is the upper α/2- th percentile of the standard normal distribution.  

 

However, this procedure performs well only when the sampling distributions 

of i
ˆ ,i 1,2   are close to normal distribution or when sample sizes are 

sufficiently large. The analogue of the MOVER and of the study by Herbert 
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et al. (2011) methods will be considered in detail and apply to be used to 

construct confidence intervals for variance difference.  

 

2.2.1 The first method [The MOVER approach] 

From equations (4) and (5), the Mover approach tries to improve confidence 

interval estimates by replacing the variance estimates, i
ˆva r( ),i 1,2



   by  

estimates that are in the neighborhood of the confidence limits L and U, 

respectively. Let (l1, u1) and (l2, u2) be separate confidence limits for 1̂  and 

2̂  respectively, then (l1, u1) and (l2, u2) contain the plausible parameter 

values for 1̂ , and 2̂ respectively. Among all these plausible values for 1̂  

and 2̂ the values closest to the minimum L and the maximum U are, 

respectively, (l1-u2) and (u1 –l2) in the spirit of the score-type confidence 

interval (Bartlett (1953)).  

 

According to Zou and Donner (2008), the variance estimates can now be 

recovered from 1 1
ˆ 1 

 
 as

 
2 2

1 1 1 /2
ˆ ˆva r( ) ( -1 ) /z  



   and from
 2 2
ˆ u   as  

2 2
2 2 2 / 2

ˆ ˆva r( ) (u ) / z .


    Substituting these back into equation (4) yields     

 

                                        
2 2

1 2 1 1 2 2
ˆ ˆ ˆ ˆL l u .                                    (6) 

 

Similarly, the recovered from 1 1
ˆ u   we have 

2 2
1 1 1 / 2

ˆ ˆva r( ) (u ) / z


  
 

and from   2 2
ˆ 1   we have 

2 2
2 2 2 / 2

ˆ ˆva r( ) ( 1 ) / z .


     Substituting these 

back into equation (5) yields     

 

            
2 2

1 2 1 1 2 2
ˆ ˆ ˆ ˆU u l .                                           (7) 

    

This procedure advantage requirement is only the availability of 

separate confidence limits that have coverage levels close to nominal, and 

does not require that the distributions of i
ˆ (i 1,2)   follows specific forms or 

to be symmetric. When the sampling distribution for i
ˆ (i 1,2)    are 
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symmetric, it directly shows that the method leads to the conventional 

confidence intervals. 

            

To obtain a confidence interval for the difference between variances via 

equation (6) and (7) we should have two separate confidence intervals 

for
2

i ,i=1,2 (i.e.,( l1, u1)and (l2, u2)). Based on the three intervals of equation 

(1), (2) and (3), respectively, the three different hybrid confidence intervals 

can then be easily computed as they all have closed form solutions. Hence, 

the traditional MOVER limits of each for 
2 2

1 2  are as follows, 

 

(i) namely U1:         

2 2 2 2 2 2
1 2 1 1 2 2L S S (S ) (u S ) ,        

2 2 2 2 2 2
1 2 1 1 2 2U S S (u S ) (S )     

 
 

where ( li, ui) , i=1,2  denote an available (1-α)100% confidence intervals for
 

2

i ,  i = 1,2  given by  equation (1). 

 

(ii) namely M1:       
2 2 2 2 2 2
1 2 1 1 2 2

ˆ ˆ ˆ ˆL ( l ) (u ) ,       
 

2 2 2 2 2 2
1 2 1 1 2 2

ˆ ˆ ˆ ˆU (u ) ( l )       
 

 

where( li, u i) , i=1,2  denote an available (1-α)100% confidence intervals for
 

2

i ,  i = 1,2  given by  equation (2) where
 

2 2 2
ii wi i i

ˆ MBBE S w (n 1)S ,


    
  

1
i i 4i i i

ˆŵ [(n 1) ( 3)(n 1) / n ]      and 
in 4 4

4i ji i i ij 1
ˆ (X X ) / n S


   . 

 

(iii) namely M2:   

  
2 2 2 2 2 2
1 2 1 1 2 2

ˆ ˆ ˆ ˆL ( l ) (u ) ,       

2 2 2 2 2 2
1 2 1 1 2 2

ˆ ˆ ˆ ˆU (u ) ( l )       
 

 

where (li, ui) , i=1,2  denote an available (1-α)100% confidence intervals for
 

2

i ,  i = 1,2  given by  equation (3) where
 

'
2 2

ii i i i
ˆ adjusted(MBBE) w (n 1)S



    ,  
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' 1
i i 4i i i

ˆŵ [(n 1) ( 3)(n 1) / n ]       , 
in' 4 4

44ii ji i i ij 1
ˆ (X m ) / n S


    and mᵢ  is a 

trimmed mean with trim–proportion equal to 
i1 2 n 4 . 

 

2.2.2 The second hybrid method  

In a recent study of Herbert et al. (2011), an interval estimation of difference 

between two independent variances was made by assuming that its sampling 

distribution is approximately normal if at least the underlying distribution of 

the observations are Gaussian with equal variances and equal sample sizes 

and their suggested confidence interval for the difference in variance is of the 

form: 

                                                       
 

2

2 2 2 2
1 2 1 2S S z Var(S ) Var(S )    

 

2

2 2 4 44* 1 4* 2
1 2 1 2

1 1 1 2 2 2

ˆ ˆ(n 3) (n 3)
S S z S S

n n (n 1) n n (n 1)


      
        

    
          

(8)   

                                  

where
4*̂  is the Bonett’s estimate of the kurtosis which is estimated by 

pooling the numerators and denominators of the individual Bonett’s estimates 

of kurtosis for each group defined  by     

 
4

i ij i

4* i2 4
ij i

( n ) (X m )
ˆ ,i 1,2, j 1,...n

[ (X X ) ]


   



 


 

  

where mi   is a trimmed mean with trim proportion equal to 
i1 2 n 4

 
(see 

Herbert et al. (2011) for their motivation and derivation).  Without loss of 

generality, this approach may be adapted for producing confidence interval of 

the variance difference based on the two asymptotic estimators of variances 
2

iS  and the adjusted (MBBE)ᵢ (rename as adjusted (
2

wiS )). Thus, analogously, 

with the usual unbiased estimator 
2

iS , we shall obtain an approximate two-

sided (1-α) 100% confidence limits for 2 2
1 2   in the similar pattern:  
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(i) Namely U2:    

 

  
2

2 2 4 44* 1 4* 2
1 2 1 2

1 1 1 2 2 2

ˆ ˆ(n 3) (n 3)
S S z S S

n n (n 1) n n (n 1)


      
       

    
 

                                    

where mi   is a trimmed mean with trim proportion equal to 
i1 2 n 4 ,

 

/2z
be a critical z-value and 

4
i ij i

4* i2 4
ij i

( n ) (X m )
ˆ ,i 1,2, j 1,...n

[ (X X ) ]


   



 


.   

           

Analogously, with the two asymptotic adjustment of biased sample variances, 

the adjusted (MBBE)₁ and adjusted (MBBE)₂, an approximate two–sided (1-

α) 100% confidence limits for 
2 2

1 2   is proposed:  

 

(ii) Namely M3:  

 

2 2 2 2
1 2 / 2 w1 w2

ˆ ˆ z MSE(adjusted(S )) MSE(adjusted(S ))
 

     

 

2

2 2 2 4 2 4 2 4 2 44* 1 4* 2
1 1 2 2 1 1 1 1 2 2 2 2

1 1 1 2 2 2

ˆ ˆ(n 3) (n 3)
a S a S z a S (a 1) S a S (a 1) S

n n (n 1) n n (n 1)


   
   
   

  
         

 

  

where  

*
i i ia w (n 1)



  * 1
i i 4* i i

ˆw [(n 1) ( 3)(n 1) / n ] ,


       4* 1 2
ˆ n n  

1 2n n4 4

1j 1 2 j 2j 1 j 1
(X m ) (X m )

 
   
  

1 2
2

n n2 2

1j 1 2 j 2j 1 j 1
(X X ) (X X ) ,

 
   
      

mi   is a trimmed mean with trim proportion equal to 
i1 2 n 4

 
and

/2z
be a 

critical z-value. 

 

3. SIMULATION RESULTS 

3.1 Method 

A simulation study was carried out to investigate the performance of the two 

different methods (described in the previous section) for calculating 95% 

confidence limits for the difference in variances.  
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Estimates of the coverage probabilities (Cps) and the average interval widths 

(Aws) of U1, U2, M1, M2 and M3, respectively, were obtained using 50,000 

pairs of two random samples of given balance and unbalance of various 

sample sizes from several types of distributions such as symmetric, 

symmetric with heavy–tailed (leptokurtic), symmetric with light–tailed 

(platykurtic), skewed, skewed with heavy–tailed and skewed with light–tailed 

distributions. The simulation programs were written in R and execute on an 

Intel computer. 

 

3.2 Results   

The performance of no difference in variances for a variety of nonnormal 

distributions was first investigated in term of coverage probabilities and the 

estimated average confidence intervals widths for the U1, M1, M2, M3 and 

U2 when various sample sizes are balanced and unbalanced designs and the 

results are summarized in Table 1. We also determined for the performances 

of the variance difference when samples are drawn from normal distributions 

in which there is a difference or no difference in variances, and then the 

results are shown in Table 2. 

          

The simulation results as shown in Table1(some are not shown here)  suggest 

that, when samples come from the symmetric nonnormal distributions with 

light tails (i.e., Be(3,3)), normal tails (i.e., t (10) and  logit(0,1)) and heavy 

tails (i.e., CN (0.8, 3), t(5) and lpl (0,1)), the U2 and M3 always provide all 

higher estimate coverage probabilities of confidence intervals for moderate to 

large in both equal and unequal sample sizes but the M3 seems to be the best 

performer since its coverage is constantly quite close to the nominal while the 

M1 and M2 are regularly identical and well perform but  somewhat wider 

than the M3 except in some light tail distribution (such as u(0,1)) that the U1 

is outperform in both designs. When samples come from asymmetric 

(skewed) distributions with nearly normal tails (i.e., chi (5) and chi (10)), 

moderately heavy tails (i.e., Be (8,1) and  Be (1,10)) and heavy tails (i.e., chi 

(3) and exp(1)), the M2 is superior since it is less sensitive than others for 

moderate to large in sample sizes regardless of balanced or unbalanced 

designs. For small sample sizes, in general, we cannot recommend any 

interval estimations since the investigation suggests that the fifth interval 

estimations often provided inaccurate coverage probabilities that either 

exceed or below the nominal level. Finally, when the samples come from a 

highly skewed distribution (i.e., ln (0,1)) with neither balanced nor 

unbalanced designs any of intervals investigated in this study will not be 

acceptable because of their too liberal performances. However, there are 
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some evidences to ensure that all the intervals investigated tend to the target 

level as sample sizes are sufficiently large. 
 

TABLE 1: Estimated coverage probabilities (Cps) and average widths (Aws) for UI, M1, M2, U2 and M3 

for a variety of nonnormal distributions with no difference between variances when various sample sizes 

are balanced and unbalanced designs 

 

         

CN 

(.8,3)      

n1 n2 

Cps 

(U1) 

Aws 

(U1) 

Cps 

(M1) 

Aws 

(M1) 

Cps 

(M2) 

Aws 

(M2) 

Cps 

(U2) 

Aws 

(U2) 

Cps 

(M3) 

Aws 

(M3) 

10 10 0.8893 29.71 0.9178 25.32 0.9404 46.18 0.9971 2.74 0.9907 2.46 

25 25 0.9296 2.41 0.9451 3.26 0.9496 3.97 0.9749 1.60 0.9666 1.54 

50 50 0.9424 1.32 0.9514 1.40 0.9530 1.42 0.9625 1.12 0.9581 1.09 

100 100 0.9456 0.86 0.9499 0.88 0.9506 0.89 0.9551 0.79 0.9528 0.78 

125 125 0.9471 0.75 0.9510 0.77 0.9519 0.77 0.9552 0.70 0.9532 0.70 

150 150 0.9471 0.68 0.9507 0.69 0.9511 0.70 0.9539 0.64 0.9523 0.64 

200 200 0.9484 0.58 0.9514 0.59 0.9517 0.59 0.9536 0.56 0.9524 0.55 

250 250 0.9488 0.51 0.9506 0.52 0.9508 0.52 0.9524 0.50 0.9516 0.49 

300 300 0.9476 0.47 0.9495 0.47 0.9499 0.47 0.9505 0.45 0.9496 0.45 

             

10 20 0.8976 23.65 0.9221 19.75 0.9392 20.92 0.9655 2.29 0.9535 2.10 

25 50 0.9305 1.90 0.9425 2.43 0.9458 2.36 0.9578 1.38 0.9514 1.34 

50 100 0.9402 1.10 0.9468 1.15 0.9483 1.16 0.9532 0.97 0.9497 0.95 

100 200 0.9461 0.73 0.9498 0.74 0.9504 0.75 0.9530 0.68 0.9512 0.67 

125 250 0.9468 0.64 0.9500 0.65 0.9505 0.65 0.9513 0.61 0.9499 0.60 

150 300 0.9469 0.58 0.9496 0.59 0.9502 0.59 0.9511 0.56 0.9495 0.55 

200 400 0.9477 0.50 0.9495 0.50 0.9499 0.50 0.9512 0.48 0.9504 0.48 

250 500 0.9481 0.44 0.9499 0.45 0.9500 0.45 0.9512 0.43 0.9506 0.43 

300 600 0.9479 0.40 0.9491 0.40 0.9494 0.40 0.9504 0.39 0.9496 0.39 

             

20 10 0.9003 12.77 0.9244 16.20 0.9412 31.36 0.9649 2.29 0.9524 2.10 

50 25 0.9315 1.90 0.9438 2.27 0.9471 3.08 0.9593 1.38 0.9529 1.33 

100 50 0.9401 1.10 0.9469 1.15 0.9482 1.16 0.9547 0.97 0.9512 0.95 

200 100 0.9457 0.73 0.9497 0.74 0.9501 0.75 0.9523 0.68 0.9506 0.67 

250 125 0.9455 0.64 0.9488 0.65 0.9494 0.65 0.9503 0.61 0.9485 0.60 

300 150 0.9479 0.58 0.9502 0.59 0.9507 0.59 0.9520 0.56 0.9506 0.55 

400 200 0.9472 0.50 0.9491 0.50 0.9494 0.50 0.9510 0.48 0.9500 0.48 

500 250 0.9468 0.44 0.9482 0.45 0.9485 0.45 0.9494 0.43 0.9487 0.43 

600 300 0.9474 0.40 0.9488 0.40 0.9491 0.40 0.9496 0.39 0.9491 0.39 

           Be(8,1)            

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M2

) 

Aws(

M2) Cps(U2) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

10 10 0.7887 0.58 0.8291 0.42 0.8830 0.53 0.9939 0.04 0.9863 0.03 

25 25 0.8727 0.18 0.8982 0.21 0.9266 0.30 0.9850 0.02 0.9773 0.02 

50 50 0.9075 0.04 0.9233 0.05 0.9444 0.07 0.9786 0.02 0.9725 0.02 

100 100 0.9301 0.01 0.9382 0.01 0.9548 0.02 0.9722 0.01 0.9687 0.01 

125 125 0.9336 0.01 0.9405 0.01 0.9543 0.01 0.9682 0.01 0.9646 0.01 

150 150 0.9352 0.01 0.9413 0.01 0.9541 0.01 0.9668 0.01 0.9641 0.01 

200 200 0.9391 0.01 0.9440 0.01 0.9544 0.01 0.9632 0.01 0.9611 0.01 

250 250 0.9412 0.01 0.9457 0.01 0.9552 0.01 0.9630 0.01 0.9613 0.01 

300 300 0.9434 0.01 0.9470 0.01 0.9564 0.01 0.9618 0.01 0.9599 0.01 

              

10 20 0.8142 0.58 0.8511 0.37 0.8982 5.20 0.9732 0.03 0.9591 0.03 

25 50 0.8832 0.10 0.9046 0.14 0.9304 0.28 0.9672 0.02 0.9581 0.02 

50 100 0.9127 0.02 0.9260 0.04 0.9454 0.04 0.9657 0.01 0.9605 0.01 

100 200 0.9320 0.01 0.9392 0.01 0.9541 0.01 0.9636 0.01 0.9607 0.01 
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125 250 0.9343 0.01 0.9406 0.01 0.9534 0.01 0.9615 0.01 0.9586 0.01 

150 300 0.9341 0.01 0.9391 0.01 0.9514 0.01 0.9601 0.01 0.9577 0.01 

200 400 0.9383 0.01 0.9416 0.01 0.9529 0.01 0.9592 0.01 0.9572 0.01 

250 500 0.9411 0.01 0.9445 0.01 0.9541 0.01 0.9589 0.01 0.9573 0.01 

300 600 0.9433 0.01 0.9457 0.01 0.9545 0.01 0.9587 0.01 0.9575 0.01 

              

20 10 0.8112 0.31 0.8494 0.47 0.8965 1.67 0.9719 0.03 0.9587 0.03 

50 25 0.8842 0.11 0.9058 0.12 0.9321 0.18 0.9678 0.02 0.9584 0.02 

100 50 0.9132 0.02 0.9259 0.03 0.9455 0.05 0.9652 0.01 0.9599 0.01 

           Be(8,1)            

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M2

) 

Aws(

M2) Cps(U2) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

200 100 0.9325 0.01 0.9396 0.01 0.9536 0.01 0.9634 0.01 0.9601 0.01 

250 125 0.9355 0.01 0.9412 0.01 0.9528 0.01 0.9619 0.01 0.9591 0.01 

300 150 0.9374 0.01 0.9422 0.01 0.9537 0.01 0.9610 0.01 0.9588 0.01 

400 200 0.9378 0.01 0.9418 0.01 0.9526 0.01 0.9589 0.01 0.9569 0.01 

500 250 0.9413 0.01 0.9439 0.01 0.9531 0.01 0.9577 0.01 0.9563 0.01 

600 300 0.9438 0.01 0.9463 0.01 0.9541 0.01 0.9587 0.01 0.9574 0.01 

            u(0,1)           

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M2

) 

Aws(

M2) 

Cps(U2

) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

10 10 0.9427 0.41 0.9555 0.64 0.9704 2.21 0.9914 0.18 0.9846 0.17 

25 25 0.9625 0.10 0.9692 0.11 0.9723 0.11 0.9672 0.09 0.9633 0.09 

50 50 0.9605 0.06 0.9645 0.07 0.9661 0.07 0.9602 0.06 0.9586 0.06 

100 100 0.9562 0.04 0.9585 0.04 0.9592 0.04 0.9560 0.04 0.9551 0.04 

125 125 0.9560 0.04 0.9572 0.04 0.9578 0.04 0.9555 0.04 0.9548 0.04 

150 150 0.9539 0.03 0.9551 0.04 0.9555 0.04 0.9535 0.03 0.9529 0.03 

200 200 0.9546 0.03 0.9557 0.03 0.9560 0.03 0.9542 0.03 0.9538 0.03 

250 250 0.9515 0.03 0.9525 0.03 0.9527 0.03 0.9514 0.03 0.9511 0.03 

300 300 0.9510 0.02 0.9520 0.02 0.9522 0.02 0.9506 0.02 0.9503 0.02 

              

10 20 0.9436 0.26 0.9552 0.30 0.9661 0.96 0.9601 0.14 0.9536 0.14 

25 50 0.9550 0.08 0.9606 0.09 0.9633 0.09 0.9564 0.08 0.9531 0.08 

50 100 0.9536 0.05 0.9565 0.06 0.9579 0.06 0.9555 0.05 0.9540 0.05 

100 200 0.9536 0.04 0.9552 0.04 0.9559 0.04 0.9528 0.04 0.9520 0.04 

125 250 0.9511 0.03 0.9525 0.03 0.9528 0.03 0.9513 0.03 0.9506 0.03 

150 300 0.9528 0.03 0.9539 0.03 0.9542 0.03 0.9520 0.03 0.9516 0.03 

200 400 0.9519 0.03 0.9528 0.03 0.9530 0.03 0.9512 0.03 0.9508 0.03 

250 500 0.9512 0.02 0.9519 0.02 0.9521 0.02 0.9515 0.02 0.9512 0.02 

300 600 0.9503 0.02 0.9508 0.02 0.9509 0.02 0.9511 0.02 0.9508 0.02 

              

20 10 0.9428 0.24 0.9538 0.43 0.9661 1.48 0.9615 0.14 0.9553 0.14 

50 25 0.9556 0.08 0.9612 0.09 0.9637 0.09 0.9576 0.08 0.9549 0.08 

100 50 0.9547 0.05 0.9574 0.06 0.9584 0.06 0.9550 0.05 0.9534 0.05 

200 100 0.9529 0.04 0.9545 0.04 0.9550 0.04 0.9522 0.04 0.9514 0.04 

250 125 0.9528 0.03 0.9539 0.03 0.9543 0.03 0.9517 0.03 0.9510 0.03 

300 150 0.9526 0.03 0.9538 0.03 0.9540 0.03 0.9528 0.03 0.9524 0.03 

400 200 0.9512 0.03 0.9520 0.03 0.9522 0.03 0.9507 0.03 0.9503 0.03 

500 250 0.9528 0.02 0.9533 0.02 0.9535 0.02 0.9521 0.02 0.9518 0.02 

600 300 0.9504 0.02 0.9510 0.02 0.9511 0.02 0.9512 0.02 0.9509 0.02 
 

            exp(1)           

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M

2) 

Aws(

M2) 

Cps(U2

) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

10 10 0.7462 54.5 0.7911 51.7 0.8486 31.6 0.9953 4.8 0.9884 3.7 

25 25 0.8374 28.3 0.8744 33.3 0.9108 66.7 0.9894 3.0 0.9825 2.6 

50 50 0.8792 16.9 0.9054 16.7 0.9321 24.1 0.9862 2.2 0.9802 2.0 

100 100 0.9062 3.5 0.9218 4.8 0.9416 7.3 0.9801 1.6 0.9744 1.5 

125 125 0.9133 2.7 0.9270 3.6 0.9434 4.0 0.9764 1.4 0.9717 1.4 
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150 150 0.9152 1.8 0.9265 3.7 0.9422 2.7 0.9745 1.3 0.9707 1.3 

200 200 0.9231 1.4 0.9320 1.5 0.9457 1.9 0.9713 1.1 0.9679 1.1 

250 250 0.9262 1.2 0.9338 1.3 0.9454 1.3 0.9679 1.0 0.9641 1.0 

300 300 0.9303 1.0 0.9365 1.1 0.9479 1.2 0.9671 0.9 0.9646 0.9 

              

10 20 0.7770 36.8 0.8203 157.1 0.8721 48.1 0.9789 4.2 0.9663 3.3 

25 50 0.8528 21.7 0.8847 26.4 0.9174 92.6 0.9748 2.7 0.9645 2.4 

50 100 0.8891 10.9 0.9102 12.9 0.9334 14.9 0.9730 1.9 0.9660 1.8 

100 200 0.9095 2.4 0.9220 3.3 0.9409 4.4 0.9683 1.4 0.9635 1.3 

125 250 0.9158 2.0 0.9258 2.3 0.9421 2.8 0.9672 1.2 0.9628 1.2 

150 300 0.9181 1.5 0.9274 1.7 0.9415 2.0 0.9659 1.1 0.9622 1.1 

200 400 0.9275 1.1 0.9334 1.3 0.9455 2.1 0.9642 1.0 0.9617 1.0 

250 500 0.9303 1.0 0.9359 1.0 0.9460 1.1 0.9626 0.9 0.9598 0.9 

300 600 0.9326 0.9 0.9369 0.9 0.9460 0.9 0.9616 0.8 0.9593 0.8 

              

            exp(1)           

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M

2) 

Aws(

M2) 

Cps(U2

) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

20 10 0.7750 70.6 0.8176 38.9 0.8691 31.6 0.9787 4.2 0.9656 3.3 

50 25 0.8534 21.0 0.8853 29.5 0.9182 31.1 0.9748 2.7 0.9656 2.4 

100 50 0.8907 10.3 0.9112 11.4 0.9346 13.0 0.9734 1.9 0.9667 1.8 

200 100 0.9113 3.0 0.9234 4.2 0.9415 5.2 0.9689 1.4 0.9644 1.3 

250 125 0.9151 2.0 0.9264 2.0 0.9418 2.4 0.9671 1.2 0.9633 1.2 

300 150 0.9205 1.5 0.9295 1.8 0.9433 2.9 0.9649 1.1 0.9610 1.1 

400 200 0.9251 1.1 0.9325 1.2 0.9447 1.3 0.9649 1.0 0.9617 1.0 

500 250 0.9303 1.0 0.9356 1.0 0.9466 1.1 0.9643 0.9 0.9617 0.9 

600 300 0.9313 0.9 0.9359 0.9 0.9459 0.9 0.9616 0.8 0.9593 0.8 

            chi(1)           

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M

2) 

Aws(

M2) 

Cps(U2

) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

10 10 0.7129 84.8 0.7412 217.6 0.7704 50.9 0.9965 12.0 0.9919 8.5 

25 25 0.8332 160.5 0.8727 102.3 0.9156 245.5 0.9954 7.8 0.9902 6.4 

50 50 0.8761 78.9 0.9089 70.2 0.9409 157.7 0.9928 5.7 0.9872 5.0 

100 100 0.8973 23.2 0.9200 33.3 0.9446 51.4 0.9880 4.1 0.9814 3.8 

125 125 0.9052 16.0 0.9248 21.8 0.9454 23.1 0.9850 3.7 0.9786 3.5 

150 150 0.9082 12.2 0.9257 22.2 0.9446 21.2 0.9815 3.4 0.9753 3.2 

200 200 0.9148 54.2 0.9292 7.8 0.9465 10.2 0.9787 2.9 0.9727 2.8 

250 250 0.9214 4.0 0.9327 5.6 0.9470 6.4 0.9747 2.6 0.9694 2.5 

300 300 0.9240 3.3 0.9342 4.0 0.9468 4.1 0.9726 2.4 0.9686 2.3 

              

10 20 0.7530 91.6 0.7870 181.7 0.8192 59.3 0.9866 10.6 0.9758 7.8 

25 50 0.8474 82.3 0.8845 116.1 0.9243 117.4 0.9821 6.9 0.9698 5.8 

50 100 0.8810 65.1 0.9107 58.6 0.9396 118.4 0.9781 5.0 0.9683 4.5 

100 200 0.9043 15.1 0.9232 370.9 0.9440 25.6 0.9723 3.6 0.9648 3.4 

125 250 0.9099 9.4 0.9249 13.5 0.9417 15.6 0.9699 3.2 0.9633 3.0 

150 300 0.9139 6.0 0.9280 8.6 0.9450 9.8 0.9705 2.9 0.9644 2.8 

200 400 0.9166 4.2 0.9280 7.4 0.9428 5.8 0.9673 2.6 0.9625 2.5 

250 500 0.9233 3.0 0.9328 3.8 0.9442 4.3 0.9656 2.3 0.9613 2.2 

300 600 0.9258 2.6 0.9336 2.9 0.9451 3.1 0.9649 2.1 0.9611 2.0 

              

20 10 0.7500 113.2 0.7849 79.4 0.8174 132.8 0.9864 10.6 0.9748 7.8 

50 25 0.8464 99.0 0.8845 92.2 0.9244 88.7 0.9815 6.8 0.9705 5.7 

100 50 0.8830 46.6 0.9125 58.9 0.9423 89.2 0.9774 5.0 0.9677 4.5 

200 100 0.9019 14.3 0.9217 25.8 0.9445 33.0 0.9730 3.6 0.9662 3.4 

250 125 0.9080 10.5 0.9247 18.2 0.9429 14.6 0.9707 3.2 0.9646 3.0 

300 150 0.9123 11.6 0.9267 9.0 0.9437 10.6 0.9698 2.9 0.9647 2.8 

400 200 0.9202 5.3 0.9314 6.4 0.9459 5.8 0.9673 2.6 0.9629 2.5 

500 250 0.9240 3.1 0.9330 3.6 0.9451 3.6 0.9662 2.3 0.9620 2.2 
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600 300 0.9260 2.7 0.9342 2.9 0.9456 3.1 0.9649 2.1 0.9609 2.0 

            chi(10)           

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M

2) 

Aws(

M2) 

Cps(U2

) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

10 10 0.8455 575.4 0.8848 840.4 0.9201 997.8 0.9956 65.1 0.9891 55.7 

25 25 0.8913 288.7 0.9139 227.8 0.9265 704.9 0.9794 39.4 0.9715 36.8 

50 50 0.9126 75.9 0.9258 77.5 0.9349 76.8 0.9711 28.1 0.9652 27.1 

100 100 0.9265 22.9 0.9339 24.0 0.9425 25.5 0.9647 20.0 0.9612 19.7 

125 125 0.9313 19.8 0.9372 20.6 0.9443 21.6 0.9626 17.9 0.9599 17.7 

150 150 0.9340 17.8 0.9389 18.3 0.9456 19.1 0.9626 16.4 0.9603 16.2 

200 200 0.9363 15.0 0.9400 15.3 0.9454 15.9 0.9595 14.2 0.9575 14.1 

250 250 0.9371 13.2 0.9407 13.5 0.9461 13.8 0.9564 12.7 0.9552 12.6 

300 300 0.9399 12.0 0.9426 12.1 0.9475 12.5 0.9567 11.6 0.9554 11.5 

              

10 20 0.8555 453.0 0.8899 506.6 0.9188 815.5 0.9685 55.2 0.9562 48.5 

25 50 0.8988 189.0 0.9173 145.6 0.9285 180.5 0.9645 34.4 0.9567 32.5 

50 100 0.9180 34.6 0.9287 39.4 0.9375 53.0 0.9624 24.5 0.9575 23.8 

100 200 0.9298 19.0 0.9355 23.8 0.9426 21.0 0.9601 17.4 0.9571 17.1 

125 250 0.9328 16.7 0.9371 17.2 0.9433 17.8 0.9577 15.5 0.9553 15.4 

150 300 0.9365 15.0 0.9399 15.4 0.9459 15.9 0.9582 14.2 0.9562 14.1 

            

            chi(10)           

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M

2) 

Aws(

M2) 

Cps(U2

) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

200 400 0.9360 12.7 0.9392 13.0 0.9449 13.3 0.9558 12.3 0.9541 12.2 

250 500 0.9401 11.3 0.9424 11.4 0.9477 11.7 0.9560 11.0 0.9549 10.9 

300 600 0.9424 10.2 0.9440 10.4 0.9492 10.6 0.9563 10.0 0.9552 10.0 

              

20 10 0.8557 431.7 0.8897 445.7 0.9183 565.0 0.9699 55.4 0.9589 48.7 

50 25 0.8989 122.7 0.9174 220.5 0.9293 568.4 0.9655 34.3 0.9579 32.5 

100 50 0.9165 63.8 0.9271 59.3 0.9359 120.1 0.9616 24.5 0.9569 23.8 

200 100 0.9289 19.1 0.9347 19.9 0.9421 21.5 0.9587 17.4 0.9559 17.1 

250 125 0.9327 16.7 0.9375 17.2 0.9432 17.9 0.9583 15.6 0.9562 15.4 

300 150 0.9353 15.0 0.9392 15.3 0.9458 15.9 0.9571 14.2 0.9552 14.0 

400 200 0.9386 12.7 0.9414 12.9 0.9470 13.3 0.9573 12.3 0.9559 12.2 

500 250 0.9405 11.3 0.9430 11.5 0.9477 11.7 0.9556 11.0 0.9545 10.9 

600 300 0.9426 10.2 0.9445 10.4 0.9488 10.6 0.9561 10.0 0.9553 10.0 

           

logit(0,

1)           

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M

2) 

Aws(

M2) 

Cps(U2

) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

10 10 0.8574 196.2 0.8937 112.3 0.9233 160.2 0.9976 10.4 0.9922 9.0 

25 25 0.9040 26.6 0.9269 29.5 0.9338 50.9 0.9814 6.4 0.9722 6.0 

50 50 0.9257 6.9 0.9392 8.3 0.9420 9.9 0.9710 4.5 0.9647 4.4 

100 100 0.9344 3.8 0.9421 4.0 0.9439 4.0 0.9621 3.2 0.9588 3.2 

125 125 0.9373 3.3 0.9434 3.4 0.9442 3.4 0.9586 2.9 0.9555 2.8 

150 150 0.9408 2.9 0.9460 3.0 0.9468 3.0 0.9590 2.6 0.9569 2.6 

200 200 0.9393 2.5 0.9432 2.5 0.9439 2.5 0.9541 2.3 0.9523 2.3 

250 250 0.9412 2.2 0.9447 2.2 0.9450 2.2 0.9541 2.0 0.9524 2.0 

300 300 0.9434 2.0 0.9462 2.0 0.9465 2.0 0.9536 1.9 0.9522 1.9 

              

10 20 0.8705 72.3 0.9031 80.4 0.9235 281.6 0.9719 8.9 0.9580 7.9 

25 50 0.9094 15.6 0.9273 20.9 0.9324 28.8 0.9625 5.5 0.9548 5.3 

50 100 0.9263 5.4 0.9363 7.1 0.9383 7.5 0.9587 3.9 0.9539 3.8 

100 200 0.9372 3.1 0.9428 3.3 0.9440 3.3 0.9557 2.8 0.9524 2.8 

125 250 0.9377 2.7 0.9423 2.8 0.9432 2.8 0.9540 2.5 0.9516 2.5 

150 300 0.9399 2.5 0.9437 2.5 0.9445 2.5 0.9523 2.3 0.9504 2.3 

200 400 0.9430 2.1 0.9458 2.1 0.9463 2.1 0.9531 2.0 0.9519 2.0 

250 500 0.9440 1.9 0.9465 1.9 0.9470 1.9 0.9530 1.8 0.9520 1.8 



Interval Estimation for the Difference between Variances of Nonnormal Distributions that  

Utilize the Kurtosis 
 

 Malaysian Journal of Mathematical Sciences 133 

 

300 600 0.9434 1.7 0.9460 1.7 0.9463 1.7 0.9511 1.6 0.9499 1.6 

              

20 10 0.8688 161.4 0.9020 153.2 0.9224 108.3 0.9719 8.9 0.9584 7.9 

50 25 0.9122 18.7 0.9303 19.5 0.9357 21.6 0.9629 5.5 0.9553 5.3 

100 50 0.9255 5.3 0.9356 6.0 0.9379 6.7 0.9591 3.9 0.9534 3.8 

200 100 0.9343 3.1 0.9403 3.3 0.9415 3.3 0.9549 2.8 0.9519 2.8 

250 125 0.9376 2.7 0.9421 2.8 0.9430 2.8 0.9546 2.5 0.9520 2.5 

300 150 0.9396 2.5 0.9432 2.5 0.9438 2.5 0.9538 2.3 0.9520 2.3 

400 200 0.9422 2.1 0.9453 2.1 0.9457 2.1 0.9523 2.0 0.9507 2.0 

500 250 0.9435 1.9 0.9461 1.9 0.9465 1.9 0.9521 1.8 0.9508 1.8 

600 300 0.9436 1.7 0.9453 1.7 0.9456 1.7 0.9514 1.6 0.9504 1.6 

            t(10)           

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M

2) 

Aws(

M2) 

Cps(U2

) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

10 10 0.8641 36.5 0.9002 58.8 0.9271 89.5 0.9974 3.9 0.9927 3.4 

25 25 0.9115 13.3 0.9310 10.6 0.9374 14.6 0.9815 2.3 0.9727 2.2 

50 50 0.9265 2.8 0.9391 3.1 0.9419 3.3 0.9688 1.7 0.9636 1.6 

100 100 0.9349 1.4 0.9418 1.5 0.9429 1.5 0.9603 1.2 0.9574 1.2 

125 125 0.9361 1.6 0.9419 1.3 0.9428 1.3 0.9578 1.1 0.9550 1.0 

150 150 0.9374 1.1 0.9424 1.1 0.9432 1.2 0.9561 1.0 0.9537 1.0 

200 200 0.9427 0.9 0.9459 0.9 0.9465 0.9 0.9571 0.8 0.9555 0.8 

250 250 0.9417 0.8 0.9444 0.8 0.9446 0.8 0.9537 0.8 0.9524 0.7 

300 300 0.9425 0.7 0.9448 0.7 0.9451 0.7 0.9532 0.7 0.9519 0.7 

              

10 20 0.8745 19.9 0.9051 37.0 0.9253 50.2 0.9720 3.3 0.9591 2.9 

25 50 0.9119 5.4 0.9295 6.8 0.9345 7.2 0.9624 2.0 0.9546 1.9 

50 100 0.9252 2.0 0.9358 2.5 0.9382 2.9 0.9575 1.4 0.9522 1.4 

            t(10)           

n1 n2 

Cps(U1

) 

Aws(

U1) 

Cps(M

1) 

Aws(

M1) 

Cps(M

2) 

Aws(

M2) 

Cps(U2

) 

Aws(

U2) 

Cps(M3

) 

Aws(

M3) 

100 200 0.9354 1.2 0.9405 1.2 0.9416 1.2 0.9550 1.0 0.9525 1.0 

125 250 0.9378 1.0 0.9423 1.0 0.9431 1.0 0.9536 0.9 0.9516 0.9 

150 300 0.9409 0.9 0.9446 0.9 0.9449 0.9 0.9542 0.8 0.9523 0.8 

200 400 0.9434 0.8 0.9462 0.8 0.9467 0.8 0.9540 0.7 0.9526 0.7 

250 500 0.9418 0.7 0.9441 0.7 0.9445 0.7 0.9519 0.7 0.9506 0.6 

300 600 0.9424 0.6 0.9442 0.6 0.9445 0.6 0.9505 0.6 0.9498 0.6 

              

20 10 0.8773 22.5 0.9084 28.5 0.9285 44.8 0.9705 3.3 0.9581 2.9 

50 25 0.9142 5.0 0.9320 6.7 0.9368 8.0 0.9625 2.0 0.9545 1.9 

100 50 0.9267 2.1 0.9368 2.4 0.9392 2.6 0.9603 1.4 0.9555 1.4 

200 100 0.9343 1.2 0.9399 1.2 0.9410 1.2 0.9547 1.0 0.9520 1.0 

250 125 0.9382 1.0 0.9425 1.0 0.9432 1.0 0.9538 0.9 0.9520 0.9 

300 150 0.9395 0.9 0.9430 0.9 0.9439 0.9 0.9545 0.8 0.9526 0.8 

400 200 0.9395 0.8 0.9422 0.8 0.9428 0.8 0.9514 0.7 0.9500 0.7 

500 250 0.9420 0.7 0.9442 0.7 0.9446 0.7 0.9520 0.7 0.9511 0.6 

600 300 0.9427 0.6 0.9450 0.6 0.9454 0.6 0.9512 0.6 0.9503 0.6 

 

 

 

 

 

 

 

 



Sirima Suwan & Sa-aat Niwitpong 

 

134 Malaysian Journal of Mathematical Sciences 

 

TABLE 2: Simulated 95% coverage probabilities (Cps) and average widths (Aws) of the U1, 

M1, M2, U2 and M3 for normal distributions with various sample sizes of balanced and 

unbalanced designs in which the variances are equal and unequal respectively. 

 
equal vars         Normal           

n1,n2 

Cps 

(u1) 

Aws(U

1) 

Cps 

(M1) 

Aws 

(M1) Cps(M2) 

Aws 

(M2) 

Cps 

(U2) 

Aws 

(U2) 

Cps 

(M3) 

Aws 

(M3) 

10,10 0.8884 17.05 0.9170 28.01 0.9398 42.74 0.9969 2.74 0.9908 2.46 

25,25 0.9308 2.39 0.9461 3.01 0.9507 3.57 0.9762 1.60 0.9677 1.54 

50,50 0.9423 1.33 0.9504 1.41 0.9526 1.42 0.9635 1.12 0.9586 1.10 

100,100 0.9466 0.86 0.9511 0.88 0.9521 0.89 0.9561 0.79 0.9540 0.78 

125,125 0.9459 0.75 0.9501 0.77 0.9508 0.77 0.9545 0.70 0.9528 0.70 

150,150 0.9489 0.68 0.9521 0.69 0.9527 0.69 0.9550 0.64 0.9537 0.64 

200,200 0.9489 0.58 0.9518 0.59 0.9522 0.59 0.9531 0.55 0.9520 0.55 

250,250 0.9484 0.51 0.9507 0.52 0.9510 0.52 0.9528 0.50 0.9517 0.49 

300,300 0.9473 0.47 0.9492 0.47 0.9494 0.47 0.9506 0.45 0.9501 0.45 

             

10,20 0.8999 11.32 0.9234 20.14 0.9392 21.70 0.9653 2.29 0.9537 2.10 

25,50 0.9310 1.88 0.9430 2.18 0.9466 2.48 0.9574 1.38 0.9515 1.34 

50,100 0.9427 1.10 0.9496 1.15 0.9510 1.16 0.9557 0.97 0.9521 0.95 

100,200 0.9455 0.73 0.9491 0.74 0.9500 0.74 0.9521 0.68 0.9502 0.67 

125,250 0.9459 0.64 0.9486 0.65 0.9490 0.65 0.9523 0.61 0.9508 0.60 

150,300 0.9463 0.58 0.9485 0.59 0.9490 0.59 0.9511 0.55 0.9495 0.55 

200,400 0.9465 0.50 0.9483 0.50 0.9486 0.50 0.9496 0.48 0.9487 0.48 

250,500 0.9488 0.44 0.9502 0.45 0.9504 0.45 0.9515 0.43 0.9507 0.43 

300,600 0.9478 0.40 0.9490 0.40 0.9491 0.40 0.9502 0.39 0.9496 0.39 

             

equal vars         Normal           

n1,n2 

Cps 

(u1) 

Aws 

(U1) 

Cps 

(M1) 

Aws 

(M1) Cps(M2) 

Aws 

(M2) 

Cps 

(U2) 

Aws 

(U2) 

Cps 

(M3) 

Aws 

(M3) 

20,10 0.8991 9.32 0.9242 12.28 0.9396 27.02 0.9648 2.29 0.9524 2.10 

50,25 0.9310 1.86 0.9429 2.23 0.9463 3.49 0.9582 1.38 0.9512 1.33 

100,50 0.9416 1.10 0.9481 1.15 0.9496 1.16 0.9548 0.97 0.9514 0.95 

200,100 0.9467 0.73 0.9502 0.74 0.9507 0.74 0.9526 0.68 0.9506 0.67 

250,125 0.9457 0.64 0.9488 0.65 0.9494 0.65 0.9516 0.61 0.9499 0.60 

300,150 0.9472 0.58 0.9496 0.59 0.9501 0.59 0.9516 0.55 0.9503 0.55 

400,200 0.9454 0.50 0.9472 0.50 0.9475 0.50 0.9492 0.48 0.9483 0.48 

500,250 0.9486 0.44 0.9500 0.45 0.9503 0.45 0.9513 0.43 0.9504 0.43 

600,300 0.9492 0.40 0.9503 0.40 0.9504 0.40 0.9511 0.39 0.9506 0.39 

           

unequal vars         Normal           

n1,n2 

Cps 

(u1) 

Aws 

(U1) 

Cps 

(M1) 

Aws 

(M1) Cps(M2) 

Aws 

(M2) 

Cps 

(U2) 

Aws 

(U2) 

Cps 

(M3) 

Aws 

(M3) 

10,10 0.8854 12.74 0.9128 22.20 0.9372 30.98 0.8996 2.00 0.9204 2.26 

25,25 0.9280 1.82 0.9415 2.30 0.9460 2.73 0.9281 1.28 0.9349 1.34 

50,50 0.9385 1.02 0.9460 1.08 0.9479 1.09 0.9451 0.92 0.9482 0.95 

100,100 0.9449 0.67 0.9486 0.68 0.9495 0.69 0.9544 0.66 0.9561 0.67 

125,125 0.9443 0.59 0.9473 0.60 0.9478 0.60 0.9564 0.59 0.9579 0.60 

150,150 0.9472 0.53 0.9500 0.54 0.9506 0.54 0.9588 0.54 0.9604 0.55 

200,200 0.9468 0.46 0.9491 0.46 0.9496 0.46 0.9602 0.47 0.9616 0.47 

250,250 0.9467 0.40 0.9482 0.41 0.9484 0.41 0.9613 0.42 0.9620 0.42 

300,300 0.9467 0.37 0.9478 0.37 0.9479 0.37 0.9617 0.38 0.9622 0.39 

             

10,20 0.8791 10.38 0.9369 7.41 0.9239 20.19 0.8672 1.90 0.8840 2.14 

25,50 0.9191 1.61 0.9501 1.47 0.9341 2.17 0.9149 1.23 0.9205 1.29 

50,100 0.9359 0.94 0.9518 0.80 0.9431 0.99 0.9390 0.89 0.9418 0.91 

100,200 0.9407 0.62 0.9523 0.52 0.9441 0.64 0.9507 0.63 0.9523 0.64 

125,250 0.9426 0.55 0.9510 0.46 0.9451 0.56 0.9549 0.57 0.9561 0.57 

150,300 0.9428 0.50 0.9505 0.41 0.9450 0.51 0.9561 0.52 0.9571 0.52 
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200,400 0.9442 0.43 0.9506 0.35 0.9457 0.43 0.9580 0.45 0.9589 0.45 

250,500 0.9456 0.38 0.9499 0.31 0.9468 0.38 0.9615 0.40 0.9623 0.41 

300,600 0.9472 0.35 0.9503 0.28 0.9485 0.35 0.9612 0.37 0.9618 0.37 

             

20,10 0.9162 5.63 0.9031 18.83 0.9495 15.25 0.9524 1.54 0.9658 1.66 

50,25 0.9398 1.26 0.9296 1.87 0.9533 2.10 0.9552 0.99 0.9610 1.02 

100,50 0.9458 0.77 0.9415 0.97 0.9529 0.80 0.9581 0.71 0.9608 0.72 

200,100 0.9489 0.51 0.9436 0.63 0.9529 0.52 0.9599 0.50 0.9615 0.51 

250,125 0.9483 0.45 0.9445 0.56 0.9514 0.46 0.9605 0.45 0.9618 0.45 

300,150 0.9480 0.41 0.9445 0.50 0.9508 0.41 0.9602 0.41 0.9612 0.41 

400,200 0.9489 0.35 0.9454 0.43 0.9509 0.35 0.9603 0.36 0.9611 0.36 

500,250 0.9488 0.31 0.9465 0.38 0.9500 0.31 0.9605 0.32 0.9609 0.32 

600,300 0.9493 0.28 0.9483 0.35 0.9504 0.28 0.9608 0.29 0.9613 0.29 

 

 

From Table2, when samples are drawn from an identical normal 

distribution, the U1 is clearly the poorest performer for all situations and all 

cases regardless of balance or unbalance designs and is the widest interval 

whereas the U2 usually has coverage a little bit above nominal that higher 

than others. For moderate to large sample sizes, the M1, M2 and M3 

generally produce almost identical results that are quite close to the target 

level for moderate to large sample sizes and become almost in distinguishable 

when sample sizes are large but the M3 might be preferable since it produces 

a little bit shorter interval widths on average. It should be note, however, that 

the coverage of U1 and U2 are also converge to the nominal level as the 

sample sizes increase.  

           

When the samples were come from normal distribution but  with 

unequal population variances (and of cause, they both have the same kurtosis 

by default) the results demonstrate that the intervals that generated from the 

first method (i.e., the U1,M1 and M2) give not only better coverage than 

those of the second method (i.e.,U2 and M3) but also converge to the target 

level as sample sizes are moderate or large regardless of balance or unbalance 

designs while the confidence limits generated from the U2 and M3 usually 

yield coverage probabilities that are exceed the nominal coverage level as the 

variance difference increases when samples are moderate or large in both 

equal group sizes or  unequal group sizes. Moreover, the M2 is still identical 

to the M1 and both are performed well in terms of maintaining their coverage 

as samples are moderate or large in sizes.  

        

In addition, for all confidence intervals investigation when samples 

are drawn from a variety of nonnormal distributions in which the variances 

are not equal has already been considered but does not report in our study 

because they provided badly results, for example, they sometimes show the 
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extremely large departure from the nominal level or give too few values of 

coverage probabilities quite often. This is such the important evidence that 

the samples which are drawn from any nonnormal distributions that are not 

identically distributed cannot be used to construct any of the intervals 

investigated in this study. 

 

4. CONCLUSIONS 

It is found that the three interval estimations, the M1, M2 and M3 

which based up on the MBBE of variance are all better perform than those 

which based up on the usual unbiased sample variance estimators, the U1and 

U2 even when samples are drawn from normal distributions. It is also found 

that the M2 is not only outperform than others for skewed distributions but 

also holds its level well for normal and symmetric nonnormal distributions 

while the M3 is out perform than others for normal and symmetric nonnormal 

distributions but is usually  liberal for skewed distribution. Thus, with 

logically reasonable in generating confidence intervals by its theoretically 

extension from the MOVER method we then recommended using M2 as an 

alternative hybrid confidence interval estimation for variance difference at 

this time, we make a notice on our experimental that in generating confidence 

intervals, we did not split up the groups of observations into sub groups but 

carried out an analysis of the two population variance differences. Therefore, 

with the given of unequal population variances, the value of kurtosis then 

change and can correspond to different distribution shapes, to make a 

comparison  between some pairs of dissimilar distributions are then not 

appropriated in this present study. To avoid the suggested problem, we left for 

the researchers as a further study. 
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